China Professional China Pneumatic Professional Manufacturer CZPT Mrhq Angular Type Rotary Gripper Air Cylinder vacuum pump and compressor

Product Description

 Working Medium: Air(to be filtered by 40μm filter element)
 Pendulum Angle: 90°±10°,180°±10°
 Claw Highest Motion Frequency: 180c.p.m
 Ambient And Fluid Temperature: 5~60ºC (Not freezing)

HangZhou XinChao Automatization Component Co.,Ltd was established in 1991, which is a high-tech company s
pecialized in manufacturing pneumatic cylinders, cylinder kits&mountings, pneumatic valves, solenoid valves, FRL air units and other pneumatic accessories. CHINAMFG has bacome 1 of the biggest pneumatic components manufacturers and export company in china.  
We has more than 300 employees and 30% of them are professionals. We has quality control Dept. and R&D Dept. With the strong research strength and rich production experience.
XCPC has passed the ISO9001:200 international quality system certification advance in the pneumatic line, use computer network management system,first-class employee training center. CHINAMFG are moving to the direction of modernization, internationalization and group.
Enhance competitiveness of CHINAMFG brand, explore the world market with CHINAMFG brand, keep improving the product quality and service to reach the best.

Material: Aluminum
Usage: Automation and Control
Structure: Piston Cylinder
Power: Pneumatic
Standard: Standard
Pressure Direction: Double-acting Cylinder
US$ 125.5/Piece
1 Piece(Min.Order)




rotary cylinder

How do rotary cylinders contribute to precise rotational control?

Rotary cylinders play a crucial role in achieving precise rotational control in various applications. Here’s a detailed explanation:

1. Actuation Methods: Rotary cylinders utilize hydraulic or pneumatic actuation methods to generate rotational motion. These actuation methods offer precise control over the application of force, allowing for accurate and controlled rotation.

2. Control Valves: Control valves are used to regulate the fluid flow into and out of the rotary cylinder. By adjusting the valve settings, the rotational speed and direction can be precisely controlled, enabling precise rotational control.

3. Feedback Systems: Some rotary cylinders incorporate feedback systems, such as position sensors or encoders, to provide real-time information about the cylinder’s rotational position. This feedback enables precise control over the rotational movement, allowing for accurate positioning and synchronization with other system components.

4. Stroke Adjustment: Rotary cylinders often have adjustable stroke lengths, which allow for precise control over the range of rotational movement. By adjusting the stroke, the rotational angle can be precisely controlled, enabling precise rotational control for specific applications.

5. Positioning Guides: Rotary cylinders may feature positioning guides, such as grooves or slots, that help guide and stabilize the rotational movement. These guides ensure precise alignment and minimize deviations or wobbling during operation, contributing to precise rotational control.

6. Precision Manufacturing: Rotary cylinders are manufactured with high precision to ensure smooth and accurate rotation. The use of high-quality materials, precision machining, and tight tolerances contribute to precise rotational control, minimizing unwanted variations or errors.

7. Integration with Control Systems: Rotary cylinders can be seamlessly integrated with control systems, allowing for precise control over the rotational motion. They can be programmed and synchronized with other system components, such as sensors, actuators, and PLCs, to achieve precise rotational control in complex automation processes.

These factors combined contribute to the precise rotational control achieved through the utilization of rotary cylinders. It’s important to consult manufacturers’ documentation and guidelines for specific information on the capabilities and limitations of rotary cylinders in achieving precise rotational control.

rotary cylinder

How do rotary cylinders contribute to energy-efficient equipment operation?

Rotary cylinders play a significant role in promoting energy-efficient equipment operation. Here’s a detailed explanation:

1. Power-On-Demand: Rotary cylinders operate based on fluid power, either hydraulic or pneumatic. One of the key advantages of fluid power systems is their power-on-demand capability. This means that the cylinder generates force and consumes energy only when necessary to perform a specific task. When the task is completed, the fluid flow to the cylinder can be shut off, resulting in energy savings compared to continuously running mechanical systems.

2. Efficient Force Conversion: Rotary cylinders efficiently convert fluid power into rotary motion. They can generate high torque, enabling them to perform tasks requiring substantial rotational force. The efficient force conversion minimizes energy losses during operation, allowing for effective utilization of input energy to achieve desired movements and work output.

3. Compact Design: Rotary cylinders are often designed to be compact and lightweight. This design approach reduces the overall weight and inertia of the equipment, resulting in energy savings. The reduced weight requires less energy to accelerate and decelerate the moving parts of the equipment, leading to improved energy efficiency.

4. Precise Control: Rotary cylinders offer precise control over the rotational motion. The ability to control speed, acceleration, and position with accuracy allows for optimized equipment operation. By fine-tuning the control parameters, energy consumption can be minimized while still achieving the desired performance. This precise control contributes to energy-efficient operation by avoiding unnecessary energy wastage.

5. Integration with Control Systems: Rotary cylinders can be seamlessly integrated into control systems such as programmable logic controllers (PLCs) or computer numerical control (CNC) systems. These control systems enable advanced algorithms and optimization techniques to be applied to the operation of rotary cylinders. By optimizing the control signals and adjusting parameters in real-time, energy consumption can be further reduced while maintaining the required functionality.

6. Energy Recovery: In certain applications, rotary cylinders can incorporate energy recovery systems. These systems capture and utilize the energy released during deceleration or load lowering. For example, in hydraulic systems, energy recovery can be achieved through the use of regenerative valves or accumulators, which store and reuse the energy that would otherwise be dissipated as heat. By recovering and reusing energy, overall energy efficiency is improved.

7. System Optimization: Rotary cylinders are part of larger systems and equipment. By considering the overall system design and optimizing the interaction between components, energy-efficient operation can be achieved. This may involve optimizing the sizing and selection of rotary cylinders, reducing friction and leakage losses, implementing efficient fluid distribution systems, and employing energy-efficient control strategies.

8. Monitoring and Maintenance: Regular monitoring and maintenance of rotary cylinders contribute to energy-efficient equipment operation. By detecting and addressing issues such as leaks, wear, or misalignment, the performance and efficiency of the cylinders can be maintained. Proper lubrication and alignment also reduce energy losses and ensure smooth operation.

By incorporating these features and considerations, rotary cylinders contribute to energy-efficient equipment operation, reducing energy consumption, and promoting sustainability in various industries.

rotary cylinder

How does a rotary cylinder differ from other types of hydraulic cylinders?

A rotary cylinder differs from other types of hydraulic cylinders in several ways. Here’s a detailed explanation:

Principle of Operation:

A rotary cylinder is designed to convert fluid power into rotational motion, while other types of hydraulic cylinders primarily provide linear motion. While standard hydraulic cylinders extend and retract in a straight line, a rotary cylinder generates rotary or swinging motion.


Rotary cylinders utilize different mechanisms to produce rotary motion. They may employ rack-and-pinion mechanisms, vane mechanisms, or gear mechanisms, depending on the specific design. In contrast, other types of hydraulic cylinders typically use a piston and cylinder arrangement to generate linear motion.

Direction of Motion:

Rotary cylinders produce rotational motion around a fixed axis or pivot point. The direction of rotation can be clockwise or counterclockwise, depending on the design and configuration of the cylinder. In contrast, other hydraulic cylinders provide linear motion in a straight line, either extending or retracting along the axis of the cylinder.


Rotary cylinders are commonly used in applications where rotational movement is required, such as rotary indexing tables, robotic arms, and conveyor systems. They are suitable for tasks that involve swinging, rotating, or indexing motions. On the other hand, other types of hydraulic cylinders are used in applications that primarily require linear motion, such as lifting, pushing, or pulling.

Advantages and Disadvantages:

Rotary cylinders offer certain advantages over other types of hydraulic cylinders. They provide compact and efficient means of generating rotary motion, allowing for versatile applications. Rotary cylinders can deliver high torque output and precise control over rotational motion. However, one potential disadvantage is that they may have a more complex design and require additional components compared to standard hydraulic cylinders.

Fluid Medium:

Rotary cylinders can be powered by either hydraulic fluid or compressed air, depending on the specific design and application. Other types of hydraulic cylinders also utilize hydraulic fluid as the power medium. The choice of fluid medium depends on factors such as the desired force and speed, environmental considerations, and system requirements.

It’s important to consult the manufacturer’s documentation and guidelines for specific information on the selection, installation, and operation of rotary cylinders and other types of hydraulic cylinders for different applications.

China Professional China Pneumatic Professional Manufacturer CZPT Mrhq Angular Type Rotary Gripper Air Cylinder   vacuum pump and compressor	China Professional China Pneumatic Professional Manufacturer CZPT Mrhq Angular Type Rotary Gripper Air Cylinder   vacuum pump and compressor
editor by CX 2023-12-14