China high quality Italy Conforti Oleodinamica Tie Rod Oil Cylinder CD80/56A160s-0203820.0 0 vacuum pump belt

Product Description

Our company produces all series of hydraulic cylinders, including engineering cylinders, tie rod cylinders, earring cylinders, multi-section cylinders, flange cylinders, high pressure cylinders, heavy-duty cylinders, HSG series hydraulic cylinders, single-acting cylinders, two-way cylinders, and other non-standard customized hydraulic product. After years of practice, our company has accumulated rich experience in processing and installation. The parts are precision CNC machined by all series of horizontal lathe, and the seals are made of CHINAMFG imported famous brand products. The products are continuously improved and improved, and the quality and accuracy are reliable and stable. Our cylinder products have been exported to the Middle East. , Asia, Europe and the United States and other places, we have more than 10 years of cooperation with oil cylinder customers.

In order to achieve maximum quality control, 80% of our parts are produced by ourselves, among which we can process super-large hydraulic cylinder body parts and telescopic shaft parts with our large horizontal lathes, we can even turn hydraulic cylinders with a length of more than 11 meters, and The surface finish of the shaft cylinder can reach Ra1.6 directly through the lathe.

Our main products :
tie rod cylinder, welding cylinder, double-acting cylinder, single-acting cylinder, piston cylinder, plunger cylinder, single-rod cylinder, double-rod cylinder, etc.;

Technical parameters: The cylinder diameter is 32~320mm, the stroke is 5~6000mm, and the working pressure is 2.5~31Mpa;

The installation methods include flange, single ear, double ear, foot seat, hinge shaft, welded pipe, etc., and provide rod end connectors, including Y-type joint, I-type joint, joint bearing, welded pipe, etc.;

 

Workshop overview:
Our sheet metal fabrication workshop equipped with a series of cutting machines, including laser cutter, flame cutter, water jet cutter, and plasma cutter, with these advanced CNC machine we can cut the materials with high efficiency and high accuracy.

  Laser Cutting Plasma Cutting Flame Cutting Water-jet Cutting
Cutting Depth 25mm 100mm 450mm 250mm
Cutting Width 3500mm 4000mm 6000mm 3500mm
Cutting Length 28000mm 20000mm 20000mm 10000mm
Accuracy ±0.2mm ±1mm   ±0.8mm

 

We have a series of imported CNC Machining equipment, including large gantry machining center, horizontal boring and milling machine, turning and milling compound center, large vertical lathe machining center, heavy horizontal lathe machining center, dmulti-hole drilling and other machining equipment facilities.
Our processing capabilities are as follows:

Gantry Machining Center Max Height:4000mm Max Width:4500mm Max Length: 12000mm    
Large Boring Mill X: 15000mm Y:4000mm Z+W:900+1000 mm Max Weight: 250T Bore Tool Dia: 280mm
Truning and Milling center Height: 4500mm Weight: 350T Max Diameter:11000mm    
Vertical Lathe Height: 4000mm Weight: 50T Max Diameter: 5000mm    
Horizontal Lathe Max Length: 12m Weight: 50T      
Deep hole drilling X:3000mm Y:2500mm Z:700mm Hole Dia: 16-80mm Depth: 700mm
Multi-hole drilling X:7000mm Y:3000mm Z:700mm Hole Dia:2-120mm Depth: 320mm

We have a complete welding platform, including plasma welding, strip surfacing, argon arc welding, TIG welding, laser welding, hand arc welding, and submerged arc welding equipment clusters. Welding methods include tube-sheet strip surfacing, automatic submerged arc welding, carbon dioxide gas shielded welding, argon tungsten arc welding, electrode arc welding, plasma welding, etc. The materials that can be welded are carbon steel, alloy steel, stainless steel, and non-ferrous metals such as copper, aluminum, and titanium.
To ensure that the quality strictly meets the requirements, we have special quality inspectors to supervise and review the product quality for all projects, and we are equipped with a variety of inspection methods. For welding, we have magnetic particle inspection, X-ray inspection and other methods to inspect the weld quality. For precision machined products, we use advanced three-coordinate testing equipment to check product size, flatness, parallelism, concentricity, etc. For precision machined surfaces, we will also use special testing equipment to check that the surface roughness perfectly meets the acceptance criteria. Moreover, we will custom make inspection methods to serve for their project.

Inspection Facilites:

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001
Pressure: Medium Pressure
Work Temperature: High Temperature
Acting Way: Double Acting
Working Method: Rotary
Adjusted Form: Switching Type
Samples:
US$ 2500/Ton
1 Ton(Min.Order)

|

Customization:
Available

|

rotary cylinder

How do rotary cylinders manage variations in hydraulic pressure and flow rate?

Rotary cylinders are designed to effectively manage variations in hydraulic pressure and flow rate. Here’s a detailed explanation:

1. Pressure Regulation: Rotary cylinders incorporate various mechanisms to manage variations in hydraulic pressure. These mechanisms include pressure relief valves, pressure control valves, and flow control valves. Pressure relief valves are designed to protect the cylinder and the hydraulic system from excessive pressure by diverting excess fluid flow back to the reservoir. Pressure control valves, such as pressure reducing valves or pressure sequence valves, are used to regulate the pressure applied to the rotary cylinder. These valves ensure that the cylinder operates within the desired pressure range, accommodating variations in the hydraulic system.

2. Flow Control: Rotary cylinders also utilize flow control mechanisms to manage variations in hydraulic flow rate. Flow control valves, such as flow restrictors or flow control regulators, are employed to control the amount of fluid flowing into or out of the cylinder. By adjusting the opening of these valves, the flow rate can be regulated, allowing for precise control of the cylinder’s rotational speed or angular displacement. Flow control valves help manage variations in flow rate and optimize the cylinder’s performance.

3. Proportional Control: Proportional control valves are often used in conjunction with rotary cylinders to manage variations in pressure and flow rate. These valves provide continuous and precise control over the hydraulic pressure and flow by adjusting the valve opening proportionally to the input signal. Proportional control allows for real-time adjustments in response to changing operational requirements, ensuring accurate and efficient management of pressure and flow variations.

4. Feedback Devices: Rotary cylinders can incorporate feedback devices, such as pressure sensors and flow sensors, to monitor and provide feedback on the hydraulic pressure and flow rate. These sensors provide real-time information about the operating conditions, allowing for dynamic adjustments to maintain desired pressure and flow levels. Feedback devices help ensure the stability and consistency of the cylinder’s performance, even in the presence of variations in hydraulic pressure and flow rate.

5. Accumulators: In some cases, rotary cylinders can utilize hydraulic accumulators to manage variations in pressure and flow rate. Accumulators store hydraulic energy in the form of pressurized fluid, which can be released when needed to compensate for fluctuations in pressure or flow. By providing an additional source of energy, accumulators help maintain consistent pressure and flow, preventing adverse effects caused by sudden changes in hydraulic conditions.

6. System Design and Optimization: Proper system design and optimization play a crucial role in managing variations in hydraulic pressure and flow rate. This includes selecting appropriate components, sizing the hydraulic lines, and ensuring proper fluid filtration and conditioning. By designing the hydraulic system to match the requirements of the rotary cylinder and the application, variations in pressure and flow rate can be effectively managed, resulting in optimal performance.

By employing these strategies and mechanisms, rotary cylinders can effectively manage variations in hydraulic pressure and flow rate, ensuring reliable and consistent performance in a wide range of applications.

rotary cylinder

How do rotary cylinders contribute to energy-efficient equipment operation?

Rotary cylinders play a significant role in promoting energy-efficient equipment operation. Here’s a detailed explanation:

1. Power-On-Demand: Rotary cylinders operate based on fluid power, either hydraulic or pneumatic. One of the key advantages of fluid power systems is their power-on-demand capability. This means that the cylinder generates force and consumes energy only when necessary to perform a specific task. When the task is completed, the fluid flow to the cylinder can be shut off, resulting in energy savings compared to continuously running mechanical systems.

2. Efficient Force Conversion: Rotary cylinders efficiently convert fluid power into rotary motion. They can generate high torque, enabling them to perform tasks requiring substantial rotational force. The efficient force conversion minimizes energy losses during operation, allowing for effective utilization of input energy to achieve desired movements and work output.

3. Compact Design: Rotary cylinders are often designed to be compact and lightweight. This design approach reduces the overall weight and inertia of the equipment, resulting in energy savings. The reduced weight requires less energy to accelerate and decelerate the moving parts of the equipment, leading to improved energy efficiency.

4. Precise Control: Rotary cylinders offer precise control over the rotational motion. The ability to control speed, acceleration, and position with accuracy allows for optimized equipment operation. By fine-tuning the control parameters, energy consumption can be minimized while still achieving the desired performance. This precise control contributes to energy-efficient operation by avoiding unnecessary energy wastage.

5. Integration with Control Systems: Rotary cylinders can be seamlessly integrated into control systems such as programmable logic controllers (PLCs) or computer numerical control (CNC) systems. These control systems enable advanced algorithms and optimization techniques to be applied to the operation of rotary cylinders. By optimizing the control signals and adjusting parameters in real-time, energy consumption can be further reduced while maintaining the required functionality.

6. Energy Recovery: In certain applications, rotary cylinders can incorporate energy recovery systems. These systems capture and utilize the energy released during deceleration or load lowering. For example, in hydraulic systems, energy recovery can be achieved through the use of regenerative valves or accumulators, which store and reuse the energy that would otherwise be dissipated as heat. By recovering and reusing energy, overall energy efficiency is improved.

7. System Optimization: Rotary cylinders are part of larger systems and equipment. By considering the overall system design and optimizing the interaction between components, energy-efficient operation can be achieved. This may involve optimizing the sizing and selection of rotary cylinders, reducing friction and leakage losses, implementing efficient fluid distribution systems, and employing energy-efficient control strategies.

8. Monitoring and Maintenance: Regular monitoring and maintenance of rotary cylinders contribute to energy-efficient equipment operation. By detecting and addressing issues such as leaks, wear, or misalignment, the performance and efficiency of the cylinders can be maintained. Proper lubrication and alignment also reduce energy losses and ensure smooth operation.

By incorporating these features and considerations, rotary cylinders contribute to energy-efficient equipment operation, reducing energy consumption, and promoting sustainability in various industries.

rotary cylinder

What is a rotary cylinder and how does it function in machinery?

A rotary cylinder is a type of actuator used in machinery to convert fluid power into rotational motion. Here’s a detailed explanation:

Function and Operation:

A rotary cylinder is designed to generate rotary or swinging motion in a machine or system. It consists of a cylindrical housing with an internal piston or vane mechanism. The cylinder housing is connected to the machine or system, while the piston or vane is driven by hydraulic or pneumatic pressure.

When fluid pressure is applied to the rotary cylinder, it creates a force that acts on the piston or vane. This force causes the piston or vane to move in a circular or swinging motion, resulting in rotational movement of the output shaft or mechanism connected to the cylinder. The direction and angle of rotation depend on the design and configuration of the rotary cylinder.

Types of Rotary Cylinders:

There are different types of rotary cylinders, including:

  • Rack-and-pinion rotary cylinders: These cylinders use a rack and pinion mechanism to convert linear motion into rotary motion. The fluid pressure pushes the piston, which engages with the rack, causing it to rotate the pinion and generate rotary motion.
  • Vane rotary cylinders: Vane cylinders use vanes or blades that are pushed outward by fluid pressure, causing the cylinder to rotate. The vanes slide in and out of slots in the rotor, creating the rotary motion.
  • Gear rotary cylinders: Gear cylinders employ gears that mesh together to generate rotary motion. Fluid pressure drives the gears, causing them to rotate and transfer the motion to the output shaft.

Applications:

Rotary cylinders find applications in various machinery and industrial systems where rotational movement is required. Some common applications include:

  • Rotary indexing tables
  • Robotic arms and manipulators
  • Material handling equipment
  • Conveyor systems
  • Machine tools
  • Packaging machinery

Rotary cylinders offer advantages such as compact size, high torque output, and precise control over rotational motion. They can be used in both hydraulic and pneumatic systems, depending on the specific requirements of the application.

It’s important to consult the manufacturer’s documentation and guidelines for specific information on the selection, installation, and operation of rotary cylinders in machinery.

China high quality Italy Conforti Oleodinamica Tie Rod Oil Cylinder CD80/56A160s-0203820.0 0   vacuum pump belt	China high quality Italy Conforti Oleodinamica Tie Rod Oil Cylinder CD80/56A160s-0203820.0 0   vacuum pump belt
editor by CX 2024-01-18